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Abstract – The emerging market of digital 3-D film productions 

in HD resolution leads to the need for high-quality equipment in 

the production chain. First, the images are treated in order to 

improve their pixel to pixel correspondence and reduce 

illumination differences. After that, stereo matching is addressed 

using different methods with emphasis on local ones like the sum 

of absolute distances and normalized cross correlation. A low-

complexity depth-reliability-based stereo matching algorithm and 

an efficient scanline memory-merging implementation scheme are 

proposed. A bidirectional depth propagation flow is then adopted 

to fill the unreliable segments by using reliable information. 

Moreover, a set of predefined function-specific reliability 

variables are extracted to further improve depth quality in the 

occluded and smooth regions, which can reduce 39% bad pixels 

obtained by applying the basic 7 × 7 window-based matching. The 

proposed scanline memory-merging scheme along with data 

prefetching can lead to 32.7% savings on the scanline memory 

area and relax the requirements of external frame buffer size and 

bandwidth. 

Index Terms – Reliability-based computation, stereo-matching, 

window-based sum of absolute differences (SAD) architecture. 

1. INTRODUCTION 

Stereo matching is a classic research topic in computer vision, 

with applications in multi view technology, 3-D films, and 3-D 

virtual reality. Although matching algorithms have been 

developed for several decades, few studies have considered 

cost-efficient, real-time very large- scale integration (VLSI) 

architecture design for such algorithms. Traditional stereo-

matching algorithms can be divided into global optimization 

approaches [1]–[3] and local window based approaches [4]–

[8]. An extensive complexity and quality comparisons of 

global and local optimization algorithms were reported in [4]. 

Global optimization provides high depth quality because of its 

energy optimization functions, but its computation load may be 

impractical for hardware implementation. Many local window-

based stereo-matching algorithms use either a variable window 

size or an irregular window shape [5], [6] to deal with depth 

discontinuity regions. Different cost aggregation [7]–[10], post 

processing [11], and preprocessing [12] techniques are also 

developed to enhance the depth quality of local window-based 

methods. Generally, the main hardware cost of local window-

based stereo-matching algorithms is dominated by the 

aggregation window size. Scharstein et al. [4] investigated the 

resulting depth quality with respect to various window sizes 

and demonstrated that the quality is unacceptable if the window 

size is smaller than 13 × 13. A relatively large window size is 

usually chosen for obtaining reliable matches, which leads to 

high complexity and memory cost for hardware design, 

especially for irregular window shapes. This paper proposes a 

depth reliability- based stereo-matching algorithm that can 

significantly improve the depth quality obtained by adopting 

small window sizes (e.g., 7×7) in conventional solutions. 

Moreover, a cost-effective scanline based VLSI hardware 

architecture are developed for stereo-matching. The proposed 

algorithm and hardware architecture are applicable for 

different requirements of quality and complexity tradeoff.  

Several stereo-matching algorithms have been developed for 

VLSI hardware architectures. In [7], a minicensus adaptive 

support weight disparity estimation algorithm was proposed on 

the basis of the adaptive support weight (ADSW) [8]. A good 

depth quality is obtained, but the memory and bandwidth 

requirements are high although some simplification and 

bandwidth reduction techniques are adopted. In [13] and [14], 

a simple sum of absolute differences (SAD) matching 

technique was adopted, but it does not perform well in occluded 

and smooth regions. The occlusion problem was addressed in 

[15] by adopting left-right consistency (LRC); however, the 

computational complexity is doubled accordingly. In [16], a 

stereo system based on a phase-based stereo-matching 

algorithm called local weighted phase-correlation was 

proposed. Although the method is robust to modest 

deformations and smooth lighting variations between 

corresponding images, the depth quality is relatively poor. A 

segmentation based design [17] with ADSW was proposed to 

reduce the required hardware resources by using a small 

window size (13×13). However, the depth quality suffers 

because of poor segmentation results. 

A cost-effective stereo-matching algorithm along with its VLSI 

architecture design and optimization are proposed in this paper. 

Instead of modifying the window shape and the weighting for 

cost aggregation, matching reliability is extracted and only 

reliable depths are used to improve depth quality. An efficient 
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depth propagation flow is then proposed to fill unreliable 

regions by using reliable results. The developed algorithm 

improves the quality of stereo matching by using a small 

window (e.g., 7 × 7). For reliable depth decision, a simple rule 

is first used to identify the most reliable depths from the trivial 

depth generated using the conventional regular square window. 

Then, a smooth region detector is introduced to filter out 

unreliable depths in smooth regions by investigating the 

variation of the cost value distribution within the search range. 

Occluded regions are excluded from the determination of 

reliable depths by using a local method that checks the depth 

difference of neighboring pixels and a global approach that 

references the depth histogram. Finally, constrained reliable 

depth dilation is applied to extend the reliable depth according 

to the depth and intensity similarities of neighboring pixels. For 

reliable depth propagation, segments consisting of continuous 

unreliable depths within a single scanline are categorized into 

three types and replaced with reliable depth at the segment 

ends. Moreover, horizontal and vertical propagation schemes 

are employed by taking into account the fattening effect and 

inter scanline inconsistency. Although the algorithm in [18] 

also addressed the concept of propagating the reliable depth, its 

line segment construction is irregular and the seed pixel 

detection includes a left–right check, making hardware 

realization expensive. 

For hardware architecture optimization, a memory merging and 

relative data prefetching scheme is developed in this paper to 

reduce the scanline buffer area by 32.7%. The search direction 

of SAD computation and data scheduling are managed to 

minimize data access latency. The processing elements (PEs) 

for parallel SAD computation are properly shared, leading to a 

PE usage reduction of about 73%. The implementation results 

demonstrate that the proposed design can achieve high area 

efficiency with performance competitive with that of existing 

algorithms with hardware implementations. For example, the 

area efficiency of the proposed design is 11 times better than 

that in [7]. 

The rest of this paper is organized as follows. Section II 

introduces several local window-based stereo-matching 

algorithms. The proposed reliability-based algorithm and its 

optimized hardware architecture are described in Sections III 

and IV, respectively. Experimental results are presented and 

compared in Section V. Section VI concludes this paper. 

2. RELATED WORK 

Stereo-matching algorithms can be divided into two categories: 

global optimization approaches and local window based 

approaches. 

2.1. Global Opti\ ncbxdt mization Approaches 

Global optimization approaches such as dynamic programming 

(DP) [1], graph cuts [2], and belief propagation [3] obtain good 

depth accuracy because of their energy optimization functions, 

which can be expressed as 

          E (d)= Edata (d) + αEsmooth (d) 

          Edata (d)=∑ C(x, y, d(x, y))(x,y)  

where the data term Edata(d) measures the correlation or 

similarity of two image pairs at a particular disparity d, the 

smoothing term Esmooth(d) is the smoothness of depth,α is the 

weighting factor between them, (x, y) is a pixel’s coordinates, 

d(x, y) is the matching correspondence in the reference image, 

and C(x, y, d(x, y)) is the cost calculation. The smoothing term 

often measures the differences between neighboring pixels’ 

disparities 

Esmooth(d)= ∑ (
−p(d(x, y) − d(x + 1, y)) +

p(d(x, y) − d(x, y + 1))
)(x,y)  

 

Where ρ is a monotonically increasing function of the disparity 

difference [4]. Global optimization often achieves better depth 

quality than that obtained with local window-based approaches 

at the cost of high computational complexity and storage 

requirements, which may be impractical for VLSI 

implementation. In contrast, local stereo-matching algorithms 

are more suitable for hardware realization and are more likely 

to meet the demands of real-time computation, though they 

usually sacrifice depth quality. 

2.2. Local Window-Based Approaches 

The development of local window-based algorithms focus on 

the matching cost computation and aggregation. Specifically, 

such algorithms choose their local window sizes and shapes, 

aggregate the matching costs according to the defined cost 

function and determine the final disparity using a local winner 

take all (WTA) optimization at each point. 

The simplest local window-based method matches the 

corresponding pixels with a fixed square window. The method 

assumes that the pixels in the window have similar depth; 

therefore, estimation error occurs when the window shifts to a 

depth discontinuity. The algorithm in [4] uses a shifting 

window to deal with depth discontinuity. When the window 

goes through a depth discontinuity, the location of the window 

that minimize the matching cost is selected. Several studies 

have proposed modifying the shape of the window for properly 

handling depth discontinuity, such as those using a compact 

window [5] and an adaptive binary window [6]. The compact 

window algorithm chooses a window size and shape by 

optimizing over a large class of compact windows via a 

minimum ratio cycle. The window cost function is denoted as 
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Where err(q, d) is the error measurement for pixel q with 

disparity d [similar to the absolute difference (AD)], CW is the 

corresponding cycle, e is the edge of CW, b(e, d) is the edge-

dependent factor, and n(q, d) is the normalization term. The 

minimum ratio cycle is used to find the window with the lowest 

matching cost. The boundaries of compact windows are located 

at edges of the image content. The adaptive binary window is 

used to segment regions with a given depth, and thus the 

window shape is irregular. To construct the support matching 

window, the color similarity of pixels in a region (e.g., a 33 × 

33 window) is used to build the window. Pixels with a small 

Euclidean distance are grouped to form the window shape in 

the CIELab color space. Because the algorithms proposed in 

[5] and [6] employ irregular window shapes, they can handle 

depth discontinuity better than can other algorithms. However, 

a hardware implementation of algorithms on the basis of 

irregular window shapes is challenging. The ADSW approach 

[8] adjusts the support weight of the pixels in a given support 

window according to the color similarity and geometric 

proximity to reduce image ambiguity. The support-weight is 

computed on the basis of Gestalt principles and can be written 

as 

 

Where _cpq and _gpq are the color difference and spatial 

distance between pixels p and q, respectively, γc is a constant 

factor 14, and γp is related to the field-of-view of the human 

visual system. The dissimilarity between pixels is measured 

using 

 

Where pd and qd are the corresponding pixels in the target 

image when the pixels p and q in the reference image have a 

disparity value d and  e(q, qd ) is the truncated AD. This 

approach implicitly segments regions with similar color, 

similar to the schemes presented in [5] and [6] but with better 

performance. However, increasing the window size. 

As discussed previously, fixed window-based approaches are 

better choices for real-time hardware implementations. 

However, existing local methods demand a large window size 

(i.e., 21 × 21 to 33 × 33) and a large number of scanline buffers 

for hardware realization with the real-time constraint. The 

proposed stereo-matching algorithm considers the reliability of 

depth decisions by using a relatively small window (e.g., 7 × 7) 

to reduce the hardware cost while maintaining similar depth 

quality. (e.g., a 33 × 33 window) increases the required 

hardware resources and an irregular window shape is difficult 

to implement in hardware. 

3. COST-EFFECTIVERELIABILITY-BASED STEREO-

MATCHING ALGORITHM 

In most stereo-matching algorithms, it is difficult to acquire 

reliable results utilizing low-complexity local window-based 

methods only, especially for cases with repeated patterns, 

smooth regions, and occluded regions. In addition, hardware 

constraints such as limited storage restrict the available 

matching window size. A depth-reliability-based stereo-

matching algorithm is proposed to generate a good depth result 

even for difficult cases. Note that the required matching 

window size is smaller than those of existing window-based 

approaches with similar depth quality. Therefore, the proposed 

algorithm consumes very limited resources and is thus suitable 

for VLSI realization. The algorithm can be divided into three 

stages: the SAD phase, the depth reliability computation phase, 

and the reliable depth propagation phase, as shown in Fig. 1. 

The SAD phase consists of a simple small window-based cost 

computation performed using a WTA decision unit. The 

results, containing many mismatches, are examined in the 

reliability computation phase. Poor decisions are removed and 

reliable depth values are extended to fill unreliable regions in 

the depth propagation stage. 

 

Fig 1 Stereo matching algorithm flow 

3.1. Fast Initial Reliability Decision 

Conventional window-based algorithms require a large 

matching window to guarantee performance. The depth results 

derived using a small window, such as 7×7 in this paper, are 

often not reliable; thus, it is crucial to identify reliable depths 

from the derived results. In this paper, depth reliability is 

initially extracted from the distribution properties of computed 

SAD values within the search range. 

Local WTA is a well-known method for determining the final 

disparities in window-based stereo-matching algorithms. The 

major problem of this approach is that the minimum cost is not 

always reliable. To relax this problem and search for more 

reliable depths, the distribution of the matching cost within the 

search range is first examined. As shown in Fig. 2(b) and (d), 
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there exists a distinct minimum cost within the search range, 

and thus the matching decision is correct (i.e.,the depth is more 

reliable). In contrast, the matching decision is more risky for 

the example shown in Fig. 2(c) and (e) as there is no distinct 

minimum cost. To distinguish these two cases, the difference 

between the minimum and the second minimum matching costs 

is considered. However, a misjudgment might occur when the 

second minimum cost is located in the neighborhood of the 

minimum cost. Under such circumstances, the depth should be 

treated as reliable information because the positions of the 

minimum and the second minimum values are close. 

Taking into account the preceding two observations, the 

minimum dm1 and the second minimum dm2 in the search 

range are recorded and then the initial depth reliability Rinit(x) 

is determined as 

 

 

Where x is the horizontal coordinate, C (x, d) is the cost value 

of disparity d within the search range S, Tc is the normalized 

threshold for determining if the depth is reliable, and Td is the 

disparity tolerance for the second minimum cost selection. 

Specifically, the initial reliable depth is estimated using a low 

complexity operation, which is the difference between the 

minimum (C (dm1)) and the second minimum (C (dm2)) cost 

values normalized by the minimum cost value. The second 

minimum cost is selected outside a tolerance range from the 

minimum value, that is, dm2 is defined in the depth search 

range excluding the neighborhood of dm1. 

 

 

Fig. 3(a) and (b) shows the trivial depth generated from the 

conventional 7 × 7 window-matching algorithm and the 

generated initial reliable depth, excluding the region marked in 

orange, without considering the tolerance range. The initial 

reliable depth decision obtained using (6) is shown in Fig. 3(c) 

in which plenty of reliable depths are recovered. The proposed 

initial reliability decision approach approximates the reliability 

values by using low-complexity computation. 

 

3.2. Deterministic Unreliable Depth Identification 

The initial reliable depth information is further refined by 

carefully identifying possible low-texture and occlusion 

regions. Specifically, those reliable depths determined in the 

initial reliability decision step are changed to be unreliable if 

they are located in the low-texture and occlusion regions. Most 

stereo-matching algorithms suffer from bad performance in 

such regions. Smooth and occlusion regions are detected 
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efficiently in the deterministic unreliable depth identification 

phase. 

3.2.1. Minimum Cost Ambiguity Problem in Low- 

Texture Regions: A smooth region is defined as a large area 

without texture, as the marked regions shown in Fig. 4(a) and 

(b). In smooth regions, the SAD costs computed using a small 

matching window within a limited search range are similar; 

thus, the correct matching pair cannot be detected. This implies 

that the matching decision in smooth regions should be 

regarded as unreliable. The simple initial depth reliability 

decision rule in (6) may not distinguish all the distribution 

cases of matching costs appropriately in smooth regions. From 

our observation, the matching costs in the search range of 

smooth regions are usually distributed in a narrow band, as 

shown in Fig. 4(c). Thus (7) is adopted to detect such a 

distribution 

 

Where the function num(d) is the number of disparities d that 

meet the statement and Tnb is the predefined width of the 

narrow band for smooth region detection. If the number of cost 

values close to the minimum cost is larger than Ts, the 

matching is treated as being performed in a smooth region and 

regarded as unreliable. The rectified outcomes are shown in 

Fig. 5, in which most of the reliable depths in low-texture 

regions determined in the initial reliability decision step are 

excluded by the low-texture detector. 

 

3.2.2. Occlusion-Induced Visual Fatigue Detection:  

Another common challenge is stereo matching in occluded 

regions (i.e., no true matching pair exists). As shown in Fig. 6, 

there is no matching pair because the occlusion highlighted in 

the left image is not visible in the right image. Most stereo-

matching algorithms do not consider this issue, thus producing 

errors in occluded regions. A well-known method for dealing 

with occlusion is the LRC check [17], which creates two 

disparity maps (i.e., left to right and right to left) and examines 

the consistency between them. Although LRC is useful for 

occlusion detection, it doubles the disparity computation 

complexity. In [19], occluded regions are detected by 

considering the motion estimation for more than two images 

(i.e., a video sequence), and thus frame buffers are required in 

hardware systems. 

 

To have a cost-effective solution, the proposed method only 

detects wrong reliability decisions affected by occlusion, 

instead of detecting all occluded areas, as done in 

[19].Occlusion-induced depth error, shown in Fig. 6(c), 

appears as an unusually large depth difference in the 

neighborhood of occluded regions owing to inaccurate 

correspondence. In this paper, a global occlusion filter that uses 

the reliable depth histogram and a local occlusion filter that 

considers the depth gradient are developed to remove reliable 

depths that were potentially generated from occluded regions. 

The three general types of derived reliable depth distribution 

are shown in Fig. 7, in which most of the reliable depths are in 

the main lobe of the distribution. Reliable depths residing 

outside the main lobe of the distribution are filtered out by the 

global filter, because the computed depth values in the 

occluded regions are usually very different from those in other 

regions. Fig. 8 shows an example with refined reliable depths 

in occluded regions obtained by tracing the main lobe of the 

reliable depth distribution. 
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The process can be formulated as 

 

where dt (x) is the trivial depth value of a pixel at horizontal 

coordinate x, bl and bu are the lower and upper bounds of the 

main distribution in the reliable depth histogram, respectively, 

h[i ] is the accumulated pixel number of depth value i, and Tsr 

is the threshold value used to denote the number of reliable 

pixels that are considered residing outside the main lobe. The 

value is estimated by the number of reliable pixels multiplied 

by a predefined fraction, which is set to 2% in our experiments. 

Because it is still possible that the reliable depths generated 

from occluded regions are within the main lobe of the 

distribution, a local occlusion filter is applied. The filter is 

basically a local disparity gradient detector applied to detect 

large reliable depth differences between neighboring pixels. 

Extensive simulations of test cases indicate that the wrong 

depth in occluded regions frequently appears as a large depth 

difference between neighboring pixels. To identify this 

condition, the x coordinate of the nearest pixel within a specific 

detection range (e.g., 8 pixels) with reliable depth is obtained 

as xnr if it exists, and then (9) is used to determine the reliability 

considering local occlusion. 

 

 

Where Tld is a chosen threshold value for denoting a large 

depth difference between two nearby pixels, which is assumed 

to rarely appear in natural scenes. Fig. 9 shows the result of 

applying the local filter to refine the reliable depths. The final 

reliable depth is determined by considering all of the reliability 

terms 

 
3.3. Constrained Reliable Depth Dilation for Object Integrity 

Owing to the strict constraints of the filters described in Section 

III-B, some points with reliable depths are misjudged as having 

unreliable depths and a sparse reliable depth map is usually 

generated, as shown in Fig. 10(b). Because the sparse map is a 

conservative outcome, constrained reliable depth dilation is 

then employed to recover some misjudged reliable depths and 

preserve object integrity. 

The proposed dilation method uses proximity and similarity 

concepts on the basis of Gestalt principles. According to 

Gestalt principles, reliable pixels are dilated into neighbors 

(i.e., proximity) if they have similar depths (i.e., similarity) and 

are regarded as the same object. The constrained dilation 

results are shown in Fig. 10(c) in which some of the misjudged 

reliable depths have been patched using. 
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Where I (x) is the intensity value of a pixel with horizontal 

coordinate x, and Tis and Tds are the tolerance values for 

intensity and depth similarity, respectively. The proposed 

dilation method is not computationally expensive and is helpful 

for preserving object integrity. It also enhances the subsequent 

propagation phase. For example, the depth map shown in the 

upper-right corner of Fig. 10(b) shows the final depth results of 

the propagation phase without reliable depth dilation. In Fig. 

10(b), the background depth is eroded into the foreground 

object, which resulted from a fragmentary object boundary, 

that is, if the object integrity is not fixed, the propagation phase 

may propagate the background depth into foreground objects. 

The dilation method preserves the object integrity effectively, 

and thus reduces the possibility of depth penetration from 

background to foreground objects, as shown in Fig. 10(c). 

3.4. Efficient Reliable Depth Propagation 

A bidirectional depth propagation scheme is developed to 

estimate the proper depth for unreliable regions. The proposed 

propagation scheme consists of three schemes: 1) horizontal 

propagation is introduced considering the foreground fattening 

effect [4], which is a side effect in window-based stereo 

matching; 2) vertical propagation using intensity similarity is 

employed to resolve interscanline inconsistency that appears in 

most raster-scan systems; and 3) background depth detection is 

applied for the case in which there is no reliable information in 

the whole scanline. To select the correct depth for unreliable 

segments, the unreliable segments are analyzed and divided 

into three categories (object boundary, inner object, and 

smooth background) as shown in Fig. 11. An object boundary 

consists of segments that are located between two objects with 

different depth values. Inner object segments imply that the 

unreliable region is located inside an object. A smooth 

background is a whole scanline that is unreliable. 

The foreground fattening effect appears at the object boundary 

segment, that is, the foreground object expands into the 

background object. Under such a circumstance, unreliable 

segments are located in the background; thus the background 

depth is propagated into unreliable regions for reducing the 

fattening effect in object boundary segments as shown in Fig. 

12. 

 

Interscanline inconsistency in raster-scan systems occurs after 

horizontal propagation, as shown in Fig. 13(b). Many scanline-

based algorithms such as scanline optimization [4] and DP [20] 

cannot easily enforce interscanline consistency, thus produce 

horizontal streaks in the depth map. To handle this problem 

with the constraint of limited hardware storage resources, the 

proposed scheme checks the intensity similarity with the 

previous scanline to determine whether to apply vertical 

propagation. If the intensity of the unreliable segment is similar 

to that of previous scanline, the depth of the previous 

scanline is propagated into the unreliable segment, as shown in 

Fig. 14. The vertical propagation is performed prior to the 

horizontal propagation. Assume that an unreliable segment 

stars at coordinate xus and ends at xue. The applied depth for 

propagation d (x) is selected as 
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where I (x) and d(x) are, respectively, the intensity and depth 

values at the x coordinate, I _(x) and d_(x) are those in the 

previous scanlines, and Tv is the selected voting threshold 

close to (xue − xus). A smaller depth value in the 

aforementioned horizontal propagation indicates a farther 

scene. Fig. 13(c) shows the depth result obtained by applying 

both the horizontal and vertical propagation schemes. 

For depth propagation in a smooth background region, because 

there is no reliable depth in the whole scanline, the depth is 

estimated by analyzing the reliable depth distribution of the 

image. In general, reliable depths of a smooth background 

appear sparsely at the boundary with a foreground object and 

the depth values are far from those of most foreground objects. 

Therefore, the developed background depth detector identifies 

a group of depths outside the main lobe of the depth distribution 

as the depth of a smooth background and then propagates them 

into the unreliable smooth background.  

The physical meanings and properties of the parameters used 

in the developed algorithm are summarized in Table I. 

4. HARDWARE ARCHITECTURE DESIGN AND 

IMPLEMENTATION 

This section describes the proposed hardware architecture and 

optimization techniques. Without loss of generality, 7×7 

window matching is used as an example. The same techniques 

can be directly applied to various window sizes. The system 

framework is a frame-buffer-less scanline-based architecture, 

that is, the hardware component can be directly inserted into 

the pixel-serial data path of the system without introducing 

frame buffer access and bandwidth competition. Each input 

image pixel is only accessed once in the continuous raster scan 

order. Therefore, a scanline buffer is added to store the data 

required for window-based computation. 

4.1. Area-Efficient Memory-Merging Design 

An area-efficient memory management scheme is introduced 

for reducing the overall storage cost. A general scanline 

memory area for different window sizes using both 55 nm and 

0.11 μm processes are analyzed as shown in Fig. 16. The data 

width of 8 b is the conventional single scanline memory, but 

the data widths of 24, 56, and 104 b are the combined memory 

blocks by considering the memory merging for the window 

sizes of 3 × 3, 7 × 7, and 13 × 13, respectively. As can be 

observed from Fig. 16, the area reduction ratio adopting the 

memory-merging scheme is higher for the advanced process 

and large window sizes. 

Fig. 17(a) shows a conventional memory allocation scheme for 

7 × 7 window SAD computation. It is composed of seven 

individual scanline memory buffers and a 7×7 register array for 

SAD computation. Because the data address in each scanline 

memory buffer is directly mapped to the horizontal coordinate 

in the image, it is straightforward to get 7 pixels with the same 

address in the seven scanline memory buffers to the register 

array in a single cycle. After seven cycles, the data required for 

the first SAD computation is ready and the register update for 

the following calculation within the search range is performed 

in circular-in-place mode to minimize the register buffer usage. 

 

 

 

Although conventional memory management is regular and 

simple, the area of seven individual scanline buffers is larger 

than that of a single large block because of the memory 

peripheral overhead. Therefore, for area efficiency, the 

memory width is increased from 1 to 7 bytes to merge the seven 

scaneline data into a large memory block, as shown in Fig. 

17(b). In this configuration, the data obtained per cycle is 7 
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continuous pixels in a single scanline rather than 7 pixels in 

seven scanlines individually. To minimize the data access 

latency, three window buffers of size 7 × 7 are needed to 

prefetch the data while computing the matching cost with 

different disparity values. Using the proposed memory-

merging technique, the total storage size for SAD computation 

can be reduced from a gate count of 39.1 k (37.1 k memory + 

2 k window buffer) to that of 26.3 k (20.3 k + 6 k). 

4.2. Resource Sharing for SAD Parallel Processing 

To meet the real-time constraint, parallel SAD computation is 

required for a wide search range in high-resolution images. The 

resource sharing concept is used in the SAD computation to 

relax the rapid growth of complexity in parallel processing. 

Generally, adequate parallelism is determined according to the 

search range, the hardware specifications, and the real-time 

constraint. A proper disparity range for human stereopsis is 256 

in Full HD resolution. For the most popular side-by side half 3-

D format, the range is 128. Taking computation complexity 

into account, 2-by-2 image down sampling is tolerable for 

depth precision, and thus the relative disparity range becomes 

64. Furthermore, considering the 7×7 matching window, the 

final search range is set to 56, which is a multiple of 7 and close 

to 64. To meet the requirement of 60 frames/s there are only 

ten cycles available for each pixel according to (12), assuming 

a clock frequency of 166 MHz and a resolution of 480 × 540 

 

As a result, 7-pixel parallel processing can meet the real-time 

requirement. The parallel SAD computation is shown in Fig. 

18. Each PE computes the matching costs of one column in a 7 

× 7 window by using 

 

Where I (m, n), d, and Ware, respectively, the 

intensity,disparity, and window size. The column indices of the 

left frame are represented as 1, 2, . .,13 (indexL) and those of 

the right frame are a, b, . . . ,m (indexR). The parallel processing 

set includes 7 pixels, denoted as {x, x +1, . . . , x +6}, and the 

used PEs are represented as PE(indexL, indexR). 49 PEs are 

needed for the 7-pixel parallel processing without PE sharing. 

Because most PEs can be shared owing to the common 

computations of neighboring pixels as shown in Fig. 18, the 

number of PEs can be reduced from 49 to 13 for the parallel 

processing set. 

 

 

 

 

4.3. Zig-Zag Memory Access for Latency Minimization 

During the parallel SAD computation for a chosen parallel 

processing set, the data in the window buffer are updated 

simultaneously when the disparity estimation is searched from 

left to right or in reverse order. Because seven cycles are 

needed to update a 7×7 window register (as shown in Fig.17) 

and a continuous data flow is desired, one more 7×7 window 

register is added to maintain the seamless operations of parallel 

SAD computation for each parallel processing set. Therefore, 

it takes 21 cycles to initialize the window buffer, as shown in 

the right side of Fig. 19(a), assuming a left-to-right search 

sequence. In this figure, the notation SAD m–n stands for the  

nth step of the mth parallel processing set, and the numbers in 

the scanline buffer and window buffer are the indices of data 
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blocks, each containing 7×7 pixels. To perform seven parallel 

SAD computations seamlessly for seven continuous disparity 

values, three data blocks (such as data blocks 1–3 initially) 

should be ready in the right window buffers. At the same time, 

new data (data block 4) are perfected to the idle (fourth) block 

of the window buffer for the next parallel SAD (SAD 1–2) 

computation. These steps are repeated until the overall search 

range is traversed in the window buffer. 

When the current parallel processing set is switched to the next 

one (e.g., from SAD 1–8 to SAD 2–1), additional memory 

access latency may exist for updating the content of the 

window buffer. Specifically, if the search direction is fixed, 21 

extra cycles are needed to initialize the data in the window 

buffer again when the parallel processing set changes, as shown 

in Fig. 19(a). This latency can be eliminated by adopting a zig-

zag memory access scheme with data sharing. The search 

direction changes alternatively as shown in Fig. 19(b). The 

directions of zig-zag search are divided into in-order search 

(left to right) and reversed-order search (right to left). At the 

final step of the first set of parallel SAD computations (i.e., 

SAD 1–8), the idle block is updated with the new data (data 

block 11) required for the next set of parallel SAD 

computations (i.e., SAD 2–1). The zig-zag search order 

between two consecutive parallel processing sets allows the 

data in the window buffer at the final step of the current set 

(e.g., SAD 1–8) to be reused by the first two steps of the next 

set (accordingly SAD 2–1 and SAD 2–2). As a result, there is 

no additional latency penalty for switching between two 

consecutive sets of parallel SAD computations. The zig-zag 

memory access scheme minimizes latency and reduces the total 

processing time by approximately 25%. 

 

 

 

 

4.4. Preprocessed Key Indices and Region Similarity 

The information required for depth reliability computation and 

depth propagation is obtained simultaneously while performing 

the SAD computation to avoid accessing image data repeatedly 

from the scanline buffer. As shown in Fig. 15, because the cost 

values within the search range are generated in a serial manner, 

only two simple comparators are used determined whether to 

update the minimum and the second minimum as well as the 

number of cost values in the predefined narrow band. The 

results are stored in registers for computing the Rinit and 

Rsmth. The similarity pre-computation unit is applied to obtain 

the intensity similarity with the previous line by checking the 

spatial difference in a 3 × 3 region. The required image data 

can be accessed directly from the window buffer while 

performing SAD computation. Finally, the similarity with the 

previous scanline is recorded using the binary tag as shown in 

Fig. 20. 

In the proposed design, the SAD computation requests a large 

disparity search range and adopts a 7-pixel parallel architecture 

according to the constraint of real-time applications. On the 

contrary, the reliability computation has relatively low 
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complexity that can be processed in a serial manner. Therefore, 

a 7-to-1 parallel-to-serial controller is required for passing the 

preprocessed information from the SAD computation unit to 

reliability computation unit. After acquiring the initial depth 

reliability decision Rinit using the minimum and the second 

minimum values, the deterministic unreliable depth is decided 

by considering: 1) Rsmth derived from the low-texture 

detection unit; 2) Rgocc determined using the histogram 

statistical results of the previous frame; and 3) Rlocc by 

checking the neighboring depth difference. 

In the propagation phase, interscanline inconsistency can be 

improved using the similarity tag to determine whether to apply 

the depth from the previous scanline. A TAG with a value of 1 

means that the depth of the previous scanline will be 

propagated downward to the unreliable segments in the current 

scanline. Finally, the remaining unreliable regions are filled 

with the nearest reliable depth at the horizontal direction. The 

computation of reliability decision and depth propagation is 

very simple with the preprocessed key indices. Moreover, the 

latency of sequentially processing 7 pixels is completely 

overlapped with the disparity search time of the SAD phase. 

5. EXPERIMENTAL RESULTS AND PERFORMANCE 

COMPARISON 

The proposed reliability-based stereo-matching architecture 

was coded in hardware description language and then 

synthesized using TSMC 90-nm CMOS technology with the 

typical library. Table II lists the core characteristics of the 

proposed design. The clock frequency can be up to 166 MHz, 

leading to a frame rate of 71 frames/s for a 480×540 resolution. 

The total gate count is 183 k excluding memory (6.72 kB) and 

is dominated by the SAD phase. 

The hardware implementation results are compared with those 

from previous studies in Table III. Points times disparity per 

second (PDS), shown in (14) is a performance indicator used 

in the literature to evaluate the throughput and the disparity 

range at the same time. It is expressed as the product of the 

frame rate (f/s), the image resolution (Xres ×Yres), andthe 

disparity range (Drange) 

PDS = Xres × Yres × f/s × Drange. 

As shown in Table III, the PDS value of the proposed algorithm 

is about 1030 million, which is much higher than those of 

previous designs. The area efficiency was computed by 

normalizing the PDS with respect to the gate count excluding 

memory size. The proposed reliability-based stereo matching 

algorithm performs well even when using only a small 

matching window, leading to a cost-effective hardware 

solution. The area efficiency is 11 times better than that in [7], 

whose algorithm was implemented with ADSW (adopting a31 

× 31 window size).The results indicate that 39% of bad pixels 

in the trivial depth are removed with limited hardware overhead 

when using the proposed method. Moreover, the proposed 

algorithm and hardware architecture are window-size 

independent. Higher performance can be achieved if more 

hardware resources are available for handling larger window 

sizes. In addition to the evaluation using acknowledged 

patterns, a large number of test images from 3-D movie trailers 

which are the physical sequences of 3-D TV applications were 

also evaluated. Some results are shown in Fig. 21. Furthermore, 

all of the threshold values defined in Section III were fixed 

constants in the evaluation, which implies that the proposed 

algorithm satisfies most conditions without requiring fine 

tuning. 

 

Fig,21 proposed output 

6. CONCLUSION 

This paper has presented a cost-effective depth-reliability 

assisted algorithm and a scanline memory-merging architecture 

that can be applied to most of the window based stereo-

matching techniques. The extracted reliability variables and 

bidirectional depth propagation improve most of the depth 

defects that are harmful to 3-D stereo applications, and reduce 

39% bad pixels from using the 7 × 7 square window matching. 

The memory-merging architecture together with data 

prefetching schedule leads to a 32.7% reduction on the scanline 

buffer size. The design specification is suitable for frame-

buffer-less systems with 60 frames/s FullHD side-by-side 3-D 

format (using 2-by-2 down sampling depth), a mainstream 

format for 3-D TVs. With the proposed schemes, introducing 

more aggressive stereo-matching algorithms to generate the 

initial depth map for further raising the depth quality is the 

possible extension of this paper. 
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